Notation and Equations for Exam 1

X: The variable we measure in a scientific study *n*: The size of the sample *N*: The size of the population *M*: The mean of the sample μ: The mean of the population (Greek letter mu) x: Any possible value of the measurement variable X f(x): The frequency of x, meaning the number of members of the population or sample for which X = xP: Probability; P(event) means the probability that event will occur. When x is a value in a population, P(x) is the fraction of the population for which X = x, or the probability that if we select a member of the population at random, the value of X for that member will be x. σ: Standard deviation of the population (Greek lowercase letter sigma) σ^2 : Variance of the population SS: Sum of squares s: Standard deviation of the sample s^2 : Variance of the sample

F(x): Cumulative distribution function

z: z-score

Formula name	Formula	Recipe	Step-by-step results
Cumulative frequency	$F(x) = \sum_{y \le x} f(y)$	Find frequency $f(y)$ for all values y	f(y)
	yex	Sum over all y that are $\leq x$	$\sum_{y \le x} f(y)$
		(y is the same kind of variable as x ; we just need two symbols here)	
	$M = \frac{\sum_{sample} X}{n}$		
Sample mean	$M = \frac{sample}{n}$	Sum scores in sample	$\sum_{sample} X$
		Divide by <i>n</i>	$\sum_{sample} X$ $\sum_{sample} N$
Mean of finite population	$\mu = \frac{\sum_{pop} X}{N}$	Sum scores in population	$\sum_{pop} X$
		Divide by N	$rac{\sum\limits_{pop}X}{N}$
P(x) for finite population	$P(x) = \frac{f(x)}{N}$	Divide frequency by N	$\frac{f(x)}{N}$
Mean of a finite or infinite population	$\mu = \sum_{x} x \cdot P(x)$	Multiply every value by its probability	$x \cdot P(x)$
	X	Sum over all values	$\sum_{x} x \cdot P(x)$

Formula name	Formula	Recipe	Step-by-step results
Sum of squares	$SS = \sum_{pop} \left(X - \mu \right)^2$	Subtract mean from each score	$X - \mu$
	F * F	Square each of these differences	$(X-\mu)^2$
		Sum over all scores	$\sum_{pop} (X - \mu)^2$
D. J. C.	$\sigma^2 = \frac{\sum_{pop} (X - \mu)^2}{N}$		$\sum (y_i)^2$
Population variance	$\sigma^{-} = \frac{r}{N}$	Compute the sum of squares as above	$\sum_{pop} (X - \mu)^2$
		Divide by N	$\frac{\sum\limits_{pop}\left(X-\mu\right)^{2}}{N}$
	$\sum (X-u)^2$		$\sum (X-\mu)^2$
Population standard deviation	$\sigma = \sqrt{\frac{\sum_{pop} (X - \mu)^2}{N}}$	Compute the variance as above	$\frac{\sum\limits_{pop}\left(X-\mu\right)^{2}}{N}$
		Take the square root	$\sqrt{\frac{\sum\limits_{pop}\left(X-\mu\right)^{2}}{N}}$
z-score	$z = \frac{X - \mu}{\sigma}$	Subtract the mean from the raw score	<i>X</i> – μ
	σ	Divide by the standard deviation	$\frac{X-\mu}{\sigma}$

Formula name	Formula	Recipe	Step-by-step results
Expected value (for any random variable <i>R</i>)	$E(R) = \sum x \cdot P(R = x)$	Multiply each possible value by its probability	$x \cdot P(R = x)$
	x	Sum over all values	$\sum_{x} x \cdot P(R = x)$
Sample variance	$s^2 = \frac{\sum_{\text{sample}} (X - M)^2}{n - 1}$	Subtract sample mean from each raw score Square each of these differences Sum over all members of the sample	$X - M$ $(X - M)^{2}$ $\sum_{\text{sample}} (X - M)^{2}$ $\sum_{\text{SMP}} (X - M)^{2}$
		Divide by one less than the sample size	$\frac{\sum_{\text{sample}} (X - M)^2}{n - 1}$
	$\sum_{i} (\mathbf{y}_i \cdot \mathbf{M})^2$		$\sum (X-M)^2$
Sample standard deviation	$S = \sqrt{\frac{\sum_{sample} (X - M)^2}{n - 1}}$	Compute sample variance as above	$\frac{\sum_{\text{sample}} (X - M)^2}{n - 1}$ $\sqrt{\frac{\sum_{\text{sample}} (X - M)^2}{\sqrt{\frac{\text{sample}}{n}}}}$
		Take square root	$\sqrt{\frac{\sum\limits_{sample} (X - M)^2}{n - 1}}$